Vitalik Buterin is a programmer and writer. He founded Ethereum, a decentralized web 3.0 publishing platform, for which he won the World Technology Award in 2014. In this article, he explores the differences between public and private blockchains and the pros and cons of both
Over the last year, the concept of 'private blockchains' has become very popular in the broader blockchain technology discussion.
Essentially, instead of having a fully public and uncontrolled network and state machine secured by cryptoeconomics (eg proof-of-work, proof-of-stake), it is also possible to create a system where access permissions are more tightly controlled, with rights to modify or even read the blockchain state restricted to a few users, while still maintaining many kinds of partial guarantees of authenticity and decentralization that blockchains provide.
Such systems have been a primary focus of interest from financial institutions and have, in part, led to a backlash from those who see such developments as either compromising the whole point of decentralization or being a desperate act of dinosaurish middlemen trying to stay relevant (or simply committing the crime of using a blockchain other than bitcoin).
However, for those who are in this fight simply because they want to figure out how to best serve humanity, or even pursue the more modest goal of serving their customers, what are the practical differences between the two styles?
First, what exactly are the options at hand? To summarize, there are generally three categories of blockchain-like database applications:
1. Public blockchains
A public blockchain is a blockchain that anyone in the world can read, anyone in the world can send transactions to and expect to see them included if they are valid, and anyone in the world can participate in the consensus process – the process for determining what blocks get added to the chain and what the current state is.
As a substitute for centralized or quasi-centralized trust, public blockchains are secured by cryptoeconomics – the combination of economic incentives and cryptographic verification using mechanisms such as proof of work or proof of stake, following a general principle that the degree to which someone can have an influence in the consensus process is proportional to the quantity of economic resources that they can bring to bear. These blockchains are generally considered to be “fully decentralized”.
2. Consortium blockchains
A consortium blockchain is a blockchain where the consensus process is controlled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial institutions, each of which operates a node and of which 10 must sign every block in order for the block to be valid.
The right to read the blockchain may be public, or restricted to the participants, and there are also hybrid routes such as the root hashes of the blocks being public together with an API that allows members of the public to make a limited number of queries and get back cryptographic proofs of some parts of the blockchain state. These blockchains may be considered “partially decentralized”.
3. Fully private blockchains
A fully private blockchain is a blockchain where write permissions are kept centralized to one organization. Read permissions may be public or restricted to an arbitrary extent. Likely applications include database management, auditing, etc internal to a single company, and so public readability may not be necessary in many cases at all, though in other cases public auditability is desired.
Essentially, instead of having a fully public and uncontrolled network and state machine secured by cryptoeconomics (eg proof-of-work, proof-of-stake), it is also possible to create a system where access permissions are more tightly controlled, with rights to modify or even read the blockchain state restricted to a few users, while still maintaining many kinds of partial guarantees of authenticity and decentralization that blockchains provide.
Such systems have been a primary focus of interest from financial institutions and have, in part, led to a backlash from those who see such developments as either compromising the whole point of decentralization or being a desperate act of dinosaurish middlemen trying to stay relevant (or simply committing the crime of using a blockchain other than bitcoin).
However, for those who are in this fight simply because they want to figure out how to best serve humanity, or even pursue the more modest goal of serving their customers, what are the practical differences between the two styles?
First, what exactly are the options at hand? To summarize, there are generally three categories of blockchain-like database applications:
1. Public blockchains
A public blockchain is a blockchain that anyone in the world can read, anyone in the world can send transactions to and expect to see them included if they are valid, and anyone in the world can participate in the consensus process – the process for determining what blocks get added to the chain and what the current state is.
As a substitute for centralized or quasi-centralized trust, public blockchains are secured by cryptoeconomics – the combination of economic incentives and cryptographic verification using mechanisms such as proof of work or proof of stake, following a general principle that the degree to which someone can have an influence in the consensus process is proportional to the quantity of economic resources that they can bring to bear. These blockchains are generally considered to be “fully decentralized”.
2. Consortium blockchains
A consortium blockchain is a blockchain where the consensus process is controlled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial institutions, each of which operates a node and of which 10 must sign every block in order for the block to be valid.
The right to read the blockchain may be public, or restricted to the participants, and there are also hybrid routes such as the root hashes of the blocks being public together with an API that allows members of the public to make a limited number of queries and get back cryptographic proofs of some parts of the blockchain state. These blockchains may be considered “partially decentralized”.
3. Fully private blockchains
A fully private blockchain is a blockchain where write permissions are kept centralized to one organization. Read permissions may be public or restricted to an arbitrary extent. Likely applications include database management, auditing, etc internal to a single company, and so public readability may not be necessary in many cases at all, though in other cases public auditability is desired.
0 Comment to "Vitalik Buterin: On Public and Private Blockchains"
Post a Comment